Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation

نویسندگان

  • Odílio Coimbra da Rocha Neto
  • Adunias dos Santos Teixeira
  • Raimundo Alípio de Oliveira Leão
  • Luis Clenio Jario Moreira
  • Lênio Soares Galvão
چکیده

Soil salinization due to irrigation affects agricultural productivity in the semi-arid region of Brazil. In this study, the performance of four computational models to estimate electrical conductivity (EC) (soil salinization) was evaluated using laboratory reflectance spectroscopy. To investigate the influence of bandwidth and band positioning on the EC estimates, we simulated the spectral resolution of two hyperspectral sensors (airborne ProSpecTIR-VS and orbital Hyperspectral Infrared Imager (HyspIRI)) and three multispectral instruments (RapidEye/REIS, High Resolution Geometric (HRG)/SPOT-5, and Operational Land Imager (OLI)/Landsat-8)). Principal component analysis (PCA) and the first-order derivative analysis were applied to the data to generate metrics associated with soil brightness and spectral features, respectively. The three sets of data (reflectance, PCA, and derivative) were tested as input variable for Extreme Learning Machine (ELM), Ordinary Least Square regression (OLS), Partial Least Squares Regression (PLSR), and Multilayer Perceptron (MLP). Finally, the laboratory models were inverted to a ProSpecTIR-VS image (400–2500 nm) acquired with 1-m spatial resolution in the northeast of Brazil. The objective was to estimate EC over exposed soils detected using the Normalized Difference Vegetation Index (NDVI). The results showed that the predictive ability of the linear models and ELM was better than that of the MLP, as indicated by higher values of the coefficient of determination (R2) and ratio of the performance to deviation (RPD), and lower values of the root mean square error (RMSE). Metrics associated with soil brightness (reflectance and PCA scores) were more efficient in detecting changes in the EC produced by soil salinization than metrics related to spectral features (derivative). When applied to the image, the PLSR model with reflectance had an RMSE of 1.22 dS·m−1 and an RPD of 2.21, and was more suitable for detecting salinization (10–20 dS·m−1) in exposed soils (NDVI < 0.30) than the other models. For all computational models, lower values of RMSE and higher values of RPD were observed for the narrowband-simulated sensors compared to the broadband-simulated instruments. The soil EC estimates improved from the RapidEye to the HRG and OLI spectral resolutions, showing the importance of shortwave intervals (SWIR-1 and SWIR-2) in detecting soil salinization when the reflectance of selected bands is used in data modelling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data

Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insec...

متن کامل

Dynamic Scene Generation, Multimodal Sensor Design, and Target Tracking Demonstration for Hyperspectral/Polarimetric Performance-Driven Sensing

Simulation of moving vehicle tracking has been demonstrated using hyperspectral and polarimetric imagery (HSI/PI). Synthetic HSI/PI image cubes of an urban scene containing moving vehicle content were generated using the Rochester Institute of Technology’s Digital Imaging and Remote Sensing Image Generation (DIRSIG) Megascene #1 model. Video streams of sensor-reaching radiance frames collected ...

متن کامل

Kernel-Based Nonparametric Fisher Classifier for Hyperspectral Remote Sensing Imagery

Hyperspectral Imagery Sensing (HIS) is widely gained tremendous popularity in many research areas such as remotely sensed satellite imaging and aerial reconnaissance. HIS is an important technique with the measurement, analysis, and interpretation of spectra acquired sensing scene an airborne or satellite sensor. The development of sensor technology brought the developing of collecting image da...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Investigating Alteration Zone Mapping Using EO-1 Hyperion Imagery and Airborne Geophysics Data

Hyperspectral remote sensing records reflectance or emittance data in a large sum of contiguous and narrow spectral bands, and thus has many information in detecting and mapping the mineral zones. On the other hand, the geological and geophysical data gives us some other fruitful information about the physical characteristics of soil and minerals that have been recorded from the surface. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017